AP Valve Seoul, August 9<sup>th</sup>, 2019

# The Next Target of the Valvular Intervention: Future Perspective

Eberhard Grube, MD, FACC, FSCAI University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA

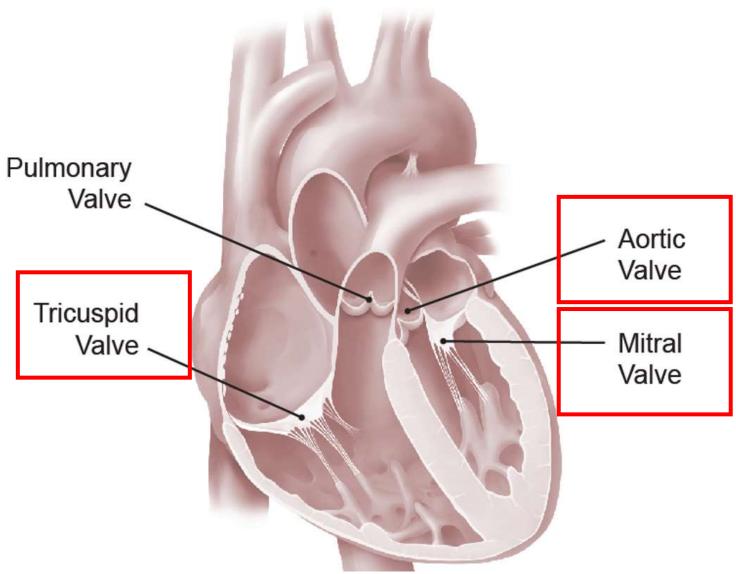
# Disclosure Eberhard Grube, MD

#### Physician Name

| Speaker Bureau | /Advisory | Board: |
|----------------|-----------|--------|
|----------------|-----------|--------|

Equity Interest:

#### <u>Company/Relationship</u>


Medtronic: C, SB, AB, OF LivaNova: C, SB, AB Highlife: AB, SB Boston Scientific: C, SB, AB Jena Valve: C,SB, AB CardioMech: C, AB Mitral Technology: C, SB, AB

InSeal Medical: E, AB, MTEx: E, AB, SB Cardiovalve: E, SB, Claret: E, AB Shockwave: E, AB Valve Medical: E, AB Millipede E, AB, SB Pie-Cardia: E, AB, SB Imperative Medical: E, AB Ancora: E, AB, SB Laminar: E, AB, SB


# **Interventional Valve Therapy** Overview

In recent years, treatment options for valvular disease have grown tremendously and have been truly disruptive.

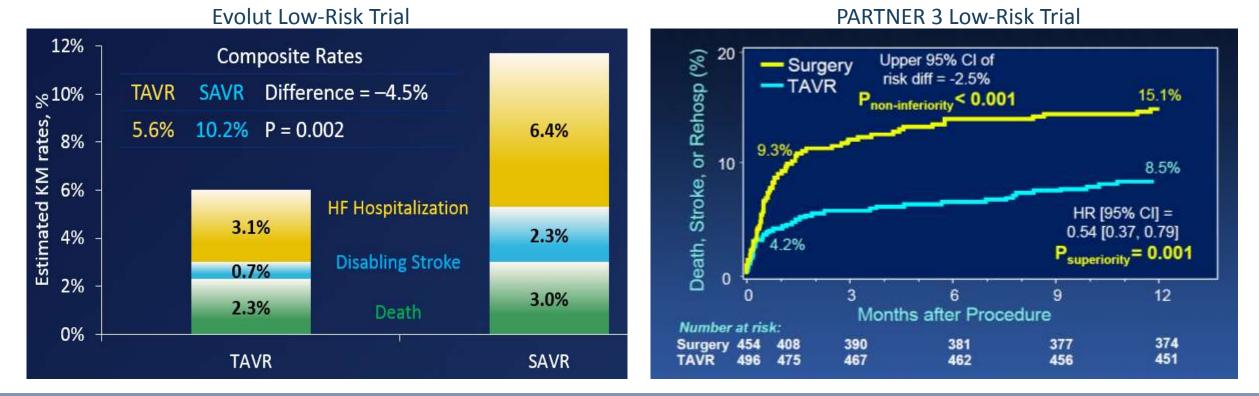
This pace is likely to continue with future interventional therapies targeting aortic, mitral, and tricuspid valve diseases.



# Interventional Valve Therapy - 2019



# **TAVR Current State**


Clinical Trials with self-expanding and balloon-expandable TAVR devices have demonstrated excellent safety and device success in extreme, high, and intermediate surgical risk patients



### **TAVR** Low Risk

Results from the randomized Evolut Low-Risk and PARTNER 3 Trials demonstrated success of the Evolut platform and SAPIEN 3 device in low surgical risk patients.

These data will drive an indication for low surgical risk patients in 2019. Age, rather than risk, will become key in selecting patients for TAVI.



#### Reardon et al., presented at ACC 2019; Leon et al. presented at ACC 2019

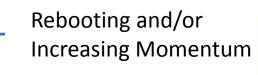
### **TAVI** Device Landscape

- Sapien 3/S3 Ultra
  Evolut R/PRO
- Current Industry Standard



- Lotus/Lotus Edge
- Acurate Neo
- Portico

Next in Line/Increasing Clinical Use




- Direct Flow
- Engager

Early or Later Demise



- Jena Valve
- Centera
- Venus A Valve






#### All of the Rest!

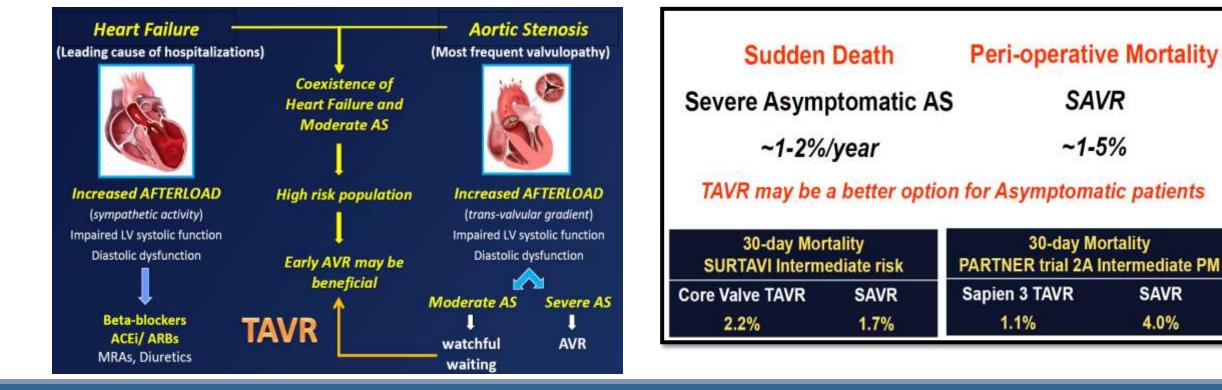
- J-Valve
- VitaFlow
- Taurus One
- Trinity
- Colibri
- Inovare
- Thubrikar
- Valve Medical
- Triskele
- BioValve
- MyVal
- HLT Meridian
- NVT
- Xeltis
- Zurich TEHV



Device selection in younger patients will be driven by valve durability and performance of TAVI valves, lifetime management of patients, and getting patients back to their daily lives faster.



# **Future Perspective of TAVR:**




### **TAVR** Expanding Indications

Studies suggest early intervention for aortic stenosis may improve patient outcomes. The less-invasive TAVI therapy may be a good option for patients with few or no symptoms.

Asymptomatic AS

Trials are currently underway to determine the safety and effectiveness of TAVI in moderate and asymptomatic AS patients. If successful, TAVI may become the treatment of choice for these patient populations.



### **Moderate AS**

<sup>1</sup>Schwartz, presented at TCT 2017; <sup>2</sup>Genereux, presented at TCT 2017; <sup>3</sup>Genereux et al., J Am Coll Cardiol. 2016;67:2263-88; <sup>4</sup>Reardon et al., NEJM 2017; <sup>5</sup>Thourani et al. Lancet 2016; 387:2218-25

### TAVR **Expanding Indications**

In addition to treating aortic stenosis, interventional cardiology will be used to treat patients with bicuspid aortic valves and patients with pure aortic regurgitation.

However, these patients present new challenges that are currently being studied

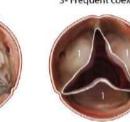
**Aortic Valve Regurgitation** 

Risk of Residual

Valvular Regurgitation

1- Minimal or absent cusp calcification

2- Dilated aortic root


### **Pure AR Challenges**

Morphological Features of Aortic Valve Stenosis or Regurgitation

#### **Calcific Aortic Valve Stenosis**

1- Nodular calcific deposits on aortic side







#### Technical Challenges of TAVR in Aortic Valve Regurgitation

Suboptimal Fluoroscopic Visualization of the Native Valve

Insufficient Anchoring and Sealing of the Transcatheter Device

**Risk of Misplacement and** Migration of the Device

### **Bicuspid Aortic Valve Challenges**

| POTENTIAL ANATOMIC FEATURE                                    | PROCEDURAL CONCERNS                                                                                      |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Elliptical annulus                                            | Impairs positioning and sealing                                                                          |
| Large annulus                                                 | May be out of TAV size range                                                                             |
| Assymetric leaflets and / or assymetric leaflet calcification | Impedes expansion, leads to gradients or PVL                                                             |
| Fused commissures (raphe)                                     | Risk of rupture<br>(during BAV or valve deployment)                                                      |
| Aortopathy                                                    | Risk of aortic dissection during the<br>procedure, and as a late<br>complication<br>Difficulty anchoring |



# Devices that will make the TAVI procedure safer are currently under development. Future TAVI procedures may include a number of these devices.

#### Neuroprotection devices



Large-hole closure devices



#### Expandable in-line sheath





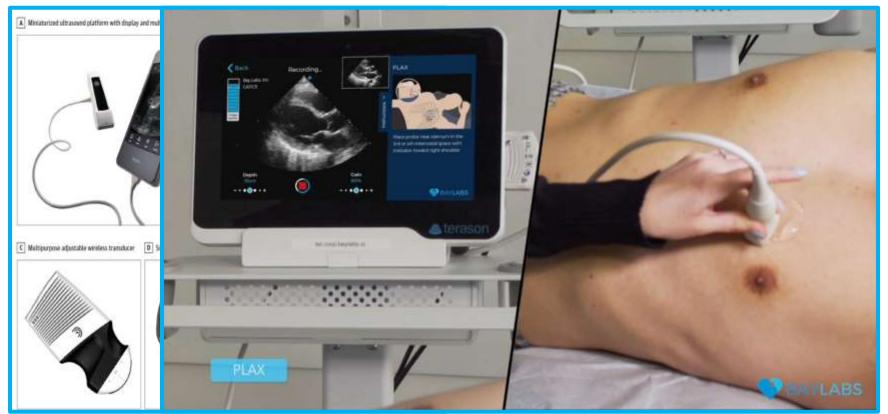


#### Dedicated wires and pacing leads



#### Calcium Management Tools



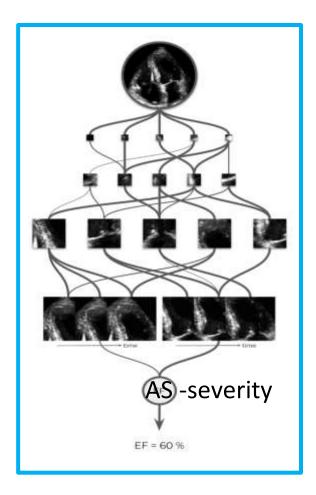

### TAVR

# Accessory Devices/Imaging Technologies

## **Bay Labs – Echo acquisition**

Available hand-held POCUS devices

Prompts for BL echo acquisition




POCUS = point-of-care ultrasound

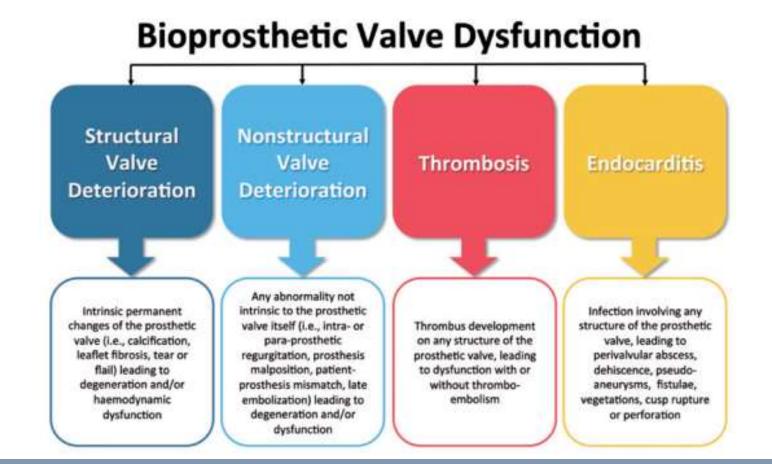
### TAVR

### Accessory Devices/Imaging Technologies

## **Bay Labs – Echo interpretation**



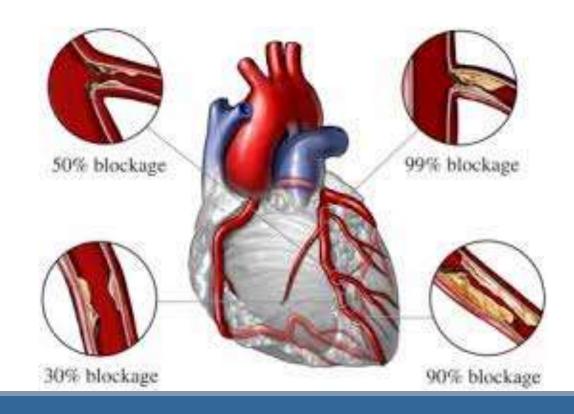
*Training:* > 25,000 complete AS echo studies


*Input:* PLAX and PSAX shown to the pre-trained network

*Output:* network integrates responses and makes diagnosis of valvular heart disease, rheumatic vs. non-rheumatic, and estimates the severity of AS (when present)

### **TAVI Device Selection**

**Durability Current State** 


**The consensus statement defined bioprosthetic valve dysfunction** (BVD) as structural valve deterioration (SVD), non-structural valve deterioration (NSVD), thrombosis, and endocarditis



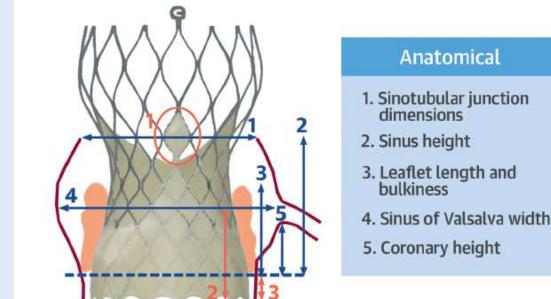
### **Lifetime Management**

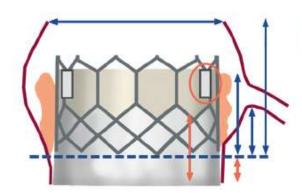
Coronary Artery Disease | PCI after TAVR

*Preserving options for interventions beyond TAVR* is critical for lifetime management of aortic stenosis patients especially as TAVR moves into younger patient populations.



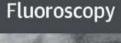
### **TAVI Device Selection**


### Post-TAVI PCI Current State


A recent review provided risk factors and guidelines for how to access the coronary arteries post-TAVI with self- and balloon-expandable valves

- The authors suggested that post-TAVI PCI is a TAVI problem, not a device problem
- Patients with narrow sinuses, low coronaries, and small sinotubular junctions are at increased risk with all TAVI devices

#### Factors Impacting Coronary Access


#### **Imaging Evaluation**






#### Device and Procedural

- 1. Commissural tab orientation
- 2. Sealing skirt height
- 3. Valve implant depth









### **TAVR Revolution - 2019** The Future....

- The success of TAVR therapy has catalyzed a 'second wave' of clinical studies to explore the expansion of clinical indications (even beyond current surgery).
- There are many innovative TAVR-related technologies which are being actively explored!
- In the future, AS classification schemes and therapy trigger points will be redefined.

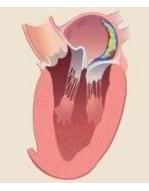


European Heart Journal (2017) **00**, 1–9 doi:10.1093/eurheartj/ehx381

#### FASTTRACK CLINICAL RESEARCH

### Staging classification of aortic stenosis based on the extent of cardiac damage

Philippe Généreux<sup>1,2,3</sup>, Philippe Pibarot<sup>4</sup>, Björn Redfors<sup>1,5</sup>, Michael J. Mack<sup>6</sup>, Raj R. Makkar<sup>7</sup>, Wael A. Jaber<sup>8</sup>, Lars G. Svensson<sup>8</sup>, Samir Kapadia<sup>8</sup>, E. Murat Tuzcu<sup>8</sup>, Vinod H. Thourani<sup>9</sup>, Vasilis Babaliaros<sup>9</sup>, Howard C. Herrmann<sup>10</sup>, Wilson Y. Szeto<sup>10</sup>, David J. Cohen<sup>11</sup>, Brian R. Lindman<sup>12</sup>, Thomas McAndrew<sup>1</sup>, Maria C. Alu<sup>13</sup>,


|                 | Stage 0           | Stage 1                                                                                  | Stage 2                                            | Stage 3                                        | Stage 4                                          |
|-----------------|-------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Stages/Criteria | No Cardiac Damage | LV Damage                                                                                | LA or Mitral Damage                                | Pulmonary Vasculature<br>or Tricuspid Damage   | RV Damage                                        |
| Echocardiogram  |                   | Increased LV Mass Index<br>>115 g/m <sup>2</sup> (Male)<br>>95 g/m <sup>2</sup> (Female) | Indexed left atrial volume<br>>34mL/m <sup>2</sup> | Systolic Pulmonary<br>hypertension<br>≥60 mmhg | Moderate-Severe right<br>ventricular dysfunction |
|                 |                   | E/e' >14                                                                                 | Moderate-Severe mitral<br>regurgitation            | Moderate-Severe<br>tricuspid regurgitation     |                                                  |
|                 |                   | LV Ejection Fraction<br><50%                                                             | Atrial Fibrillation                                |                                                |                                                  |

### **TAVR Revolution - 2019** The Future....

- There are also many 'gaps' in TAVR knowledge which must be addressed (e.g. valve leaflet abnormalities, late TAVR SVD/durability, coronary access considerations, and optimal adjunctive pharmacotherapy).
- By all meaningful criteria however, TAVR has been a BREAKTHROUGH Technology in the management of patients with aortic stenosis!

### **Mitral Regurgitation** Current State

### Mitral Regurgitation is the most prevalent form of mitral valve disease and affects >8% of people >65 years. Treatment options vary with etiology




### **Primary MR**

- Surgical treatment options are effective and not controversial
- Transcatheter edge-to-edge repair is recommended in those who are inoperable or at high surgical risk

### Secondary MR

- Management of secondary MR presents significant challenges since this type of MR is largely related to the disease process in the LV
- Therapy is primarily directed toward the underlying LV disorder and includes medical therapy, surgery, and transcatheter edge-to-edge repair



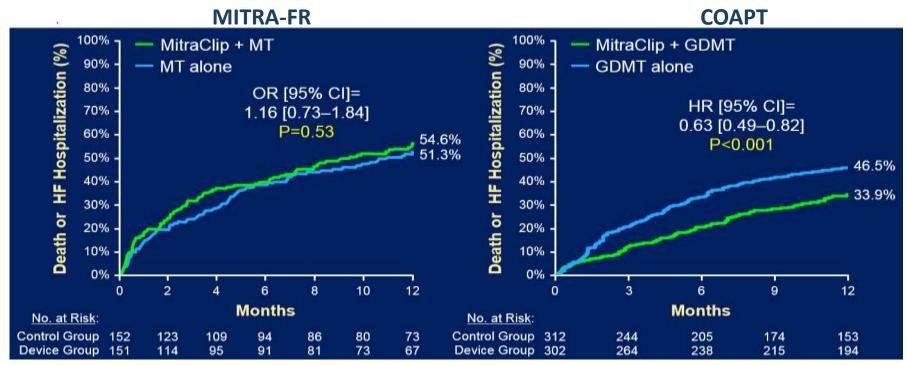
### **Mitral Regurgitation** Unmet Need

- Surgical treatment of MR yields acceptable results, especially for primary MR.
- However, patients with severe mitral regurgitation are often denied surgery. Reasons include:
  - ✓ Impaired LVEF
  - ✓ Older Age
  - ✓ Comorbidities / surgical risk status
- A toolbox of treatment options will be needed to treat this heterogeneous disease.
- There is a wide range of transcatheter devices are under development. It is difficult to predict which of these will be most effective and adopted into practice.

### **Mitral Regurgitation** Transcatheter Repair Devices

### Current devices target the MV leaflets, chordal apparatus, and mitral annulus.

| Anatomic             | Target   | Device                          | Description                         | Main<br>Indications                 | Status                  | Reported # of<br>Treated Patients |
|----------------------|----------|---------------------------------|-------------------------------------|-------------------------------------|-------------------------|-----------------------------------|
| Mitral<br>Leaflets   | K.       | MitraClip                       | Edge-to-Edge                        | Primary and<br>Secondary MR         | FDA Approved<br>CE Mark | >80,000                           |
|                      | N        | Pascal                          | Edge-to-Edge                        | Primary and<br>Secondary MR         | CE Mark                 | >30                               |
| Mitral<br>Annulus    | Carillon | Coronary Sinus<br>cinching      | Secondary MR                        | CE Mark                             | >500                    |                                   |
|                      | - a      | Cardioband                      | Direct annuloplasty                 | Secondary MR                        | CE Mark                 | >100                              |
|                      |          | Mitralign                       | Annular plication                   | Secondary MR                        | CE Mark                 | >100                              |
| Chordal<br>Apparatus | NeoChord | Artificial chordal implantation | Posterior leaflet<br>flail/prolapse | CE Mark                             | >250                    |                                   |
|                      | A        | Harpoon                         | Artificial chordal implantation     | Posterior leaflet<br>flail/prolapse | _                       | <50                               |



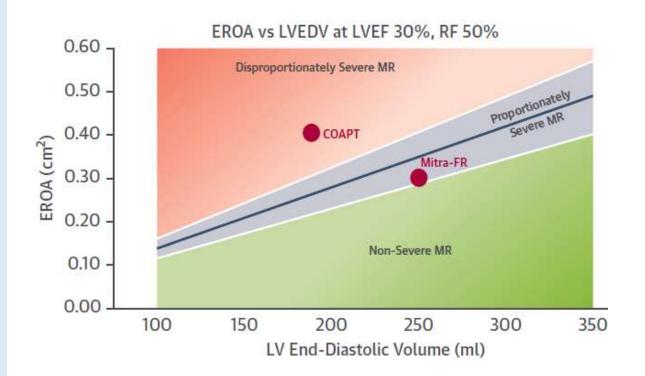

А

# Imitate Prof Alfieri - MitraClip



Together, MITRA-FR and COAPT have begun to provide information on secondary MR patients who may benefit from mitral valve interventions. Future TMV studies will continue to inform on patient selection.

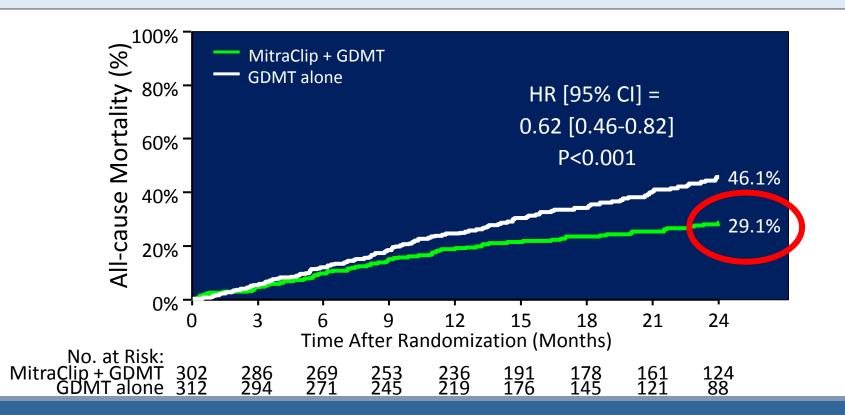



<sup>1</sup>Obadia, et. al., New Engl J Med 2018; 379(24): 2297-2306; <sup>1</sup>Stone, et. al., New Engl J Med 2018; 379(24): 2307-2318

### **Secondary Mitral Regurgitation** Transcatheter Repair Patient Selection

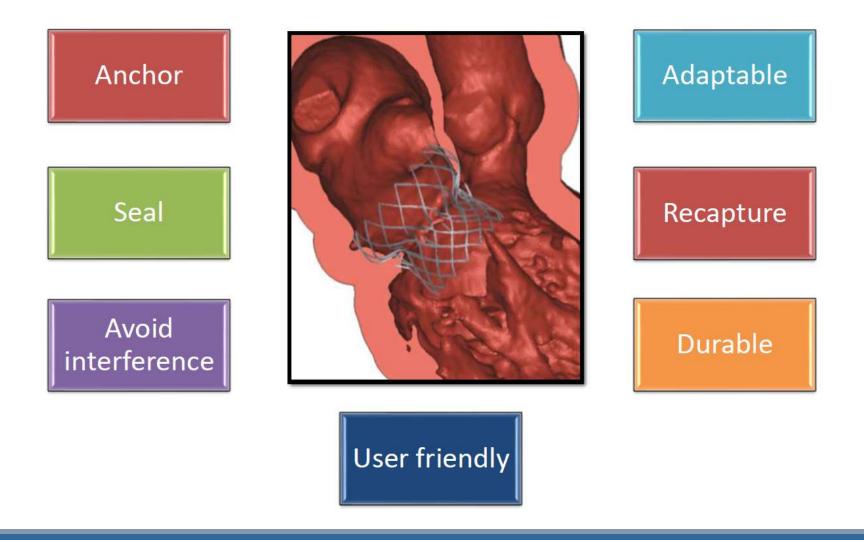
As new therapies become available, it becomes increasingly important to identify those patients who benefit from a particular therapy vs. those who will not.

A recent framework based on EROA and LVEDV was proposed to identify patients who may benefit from transcatheter edge-to-edge therapy. The authors proposed the following sub-categories of secondary MR


- Proportionate MR
  - MR is expected due to the degree of LV dilatation
  - No TMVr benefit (MITRA-FR patients)
- Disproportionate MR
  - MR is unexpected relative to degree of LV dilatation
  - Likely TMVr benefit (COAPT patients)
- Non-severe MR
  - No TMVr benefit



### Secondary Mitral Regurgitation Unmet Need


Outcomes of the COAPT trial will be difficult to replicate in a "real-world" setting as demonstrated by the MITRA-FR trial. Even in those COAPT patients successfully treated with the MitraClip device, nearly 30% of patients had died at 2 years.

Despite the incredible success of COAPT, there remains a significant unmet need in secondary MR patients.



Presented by Greg Stone, TCT 2018

### **Mitral Regurgitation** Transcatheter Replacement Devices | Design Targets

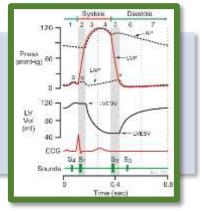


# Challenges for Transcatheter Mitral Valve Intervention



### **Challenges for TMVR Development**




- Mitral Valve Pathology
- Absence of Calcium
- Variable Calcification (MAC)
- Sub-valvular apparatus
- Large Effective Orifice Area
- Large Annular Range

### Anatomy & Pathology

### Dynamic Environment



- High Transvalvular Gradients
- High Dislodgement Forces





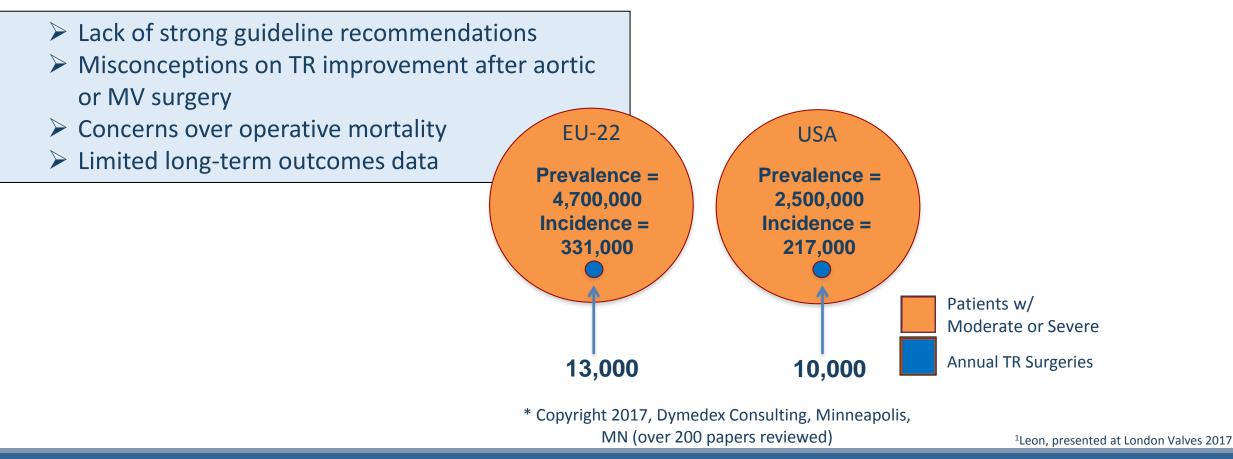
- Poor Ventricular Function
- Thin Ventricular Walls
- Steering
- Delivery System Profile

# Access & Positioning

### **Mitral Regurgitation** Transcatheter Replacement Devices in Human Use

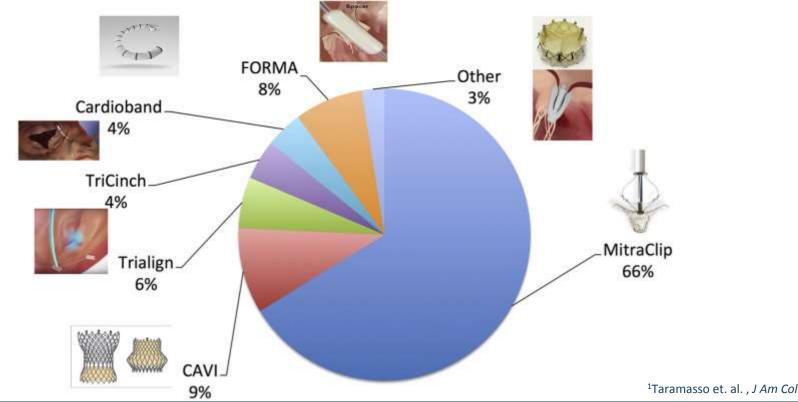
There are a number of transcatheter MV replacement (TMVR) devices under development that show excellent MR reduction and ease of use, but poor safety outcomes compared to transcatheter repair devices.

| Technologies |                    | Reported Human Experience |  |
|--------------|--------------------|---------------------------|--|
| Tendyne      | • 9                | 230+                      |  |
| Intrepid     | Barrow a           | 185+                      |  |
| Fortis       |                    | 40+                       |  |
| Tiara        |                    | 37+                       |  |
| Evoque       | Series Contraction | 23+                       |  |
| Caisson      | S.                 | 12+                       |  |
| HighLife     |                    | 11+                       |  |
|              | TO                 | ГAL 538+                  |  |


There is a vast number of devices under development that vary drastically in treatment mechanism.

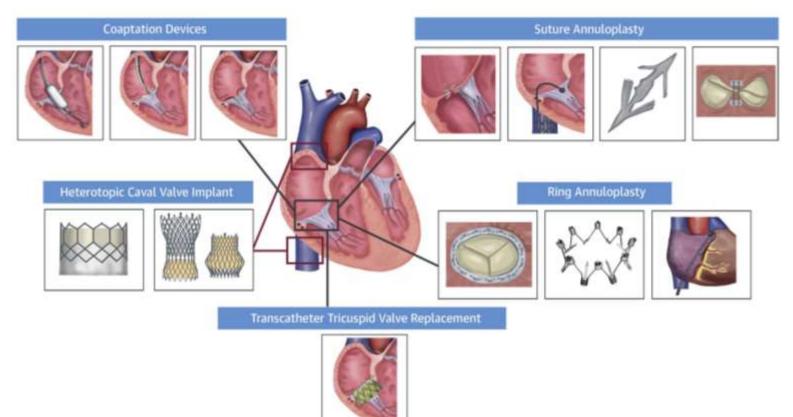
The success of future TMV devices will require:

- High safety profile
- MR reduction similar to surgery
- Minimal anatomical exclusions
- Transseptal/transfemoral delivery
- Predictive deployment and ease of use


### **Tricuspid Valve Therapies** Unmet Need

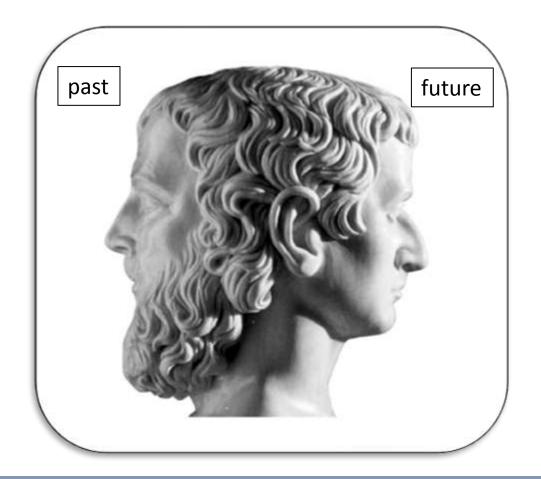
**Historically, the tricuspid valve has largely been ignored giving it the nickname the "forgotten valve."** Current guideline recommendations favor *early surgical repair in patients* undergoing left-sided surgery, yet few patients receive surgical treatment for TR due to:




### **Tricuspid Regurgitation** Current State of Transcatheter Therapies

A recent report on 312 high-risk patients included in the international TriValve Registry showed 92% of patients undergoing transcatheter therapies had functional/secondary TR. Patients were mainly treated with therapies designed for the mitral space and saw a 73% procedural success rate with excellent safety outcomes.




# **Tricuspid Regurgitation** Novel Therapies

Novel transcatheter devices are in the early stages of development and may provide additional options for patients in the future.



# JANUS

# the Roman God of beginnings and transitions (looking to the past and the future)



Interventional Cardiology The Next Decade!

There's never been a better time to be an Interventional Cardiologist!